Spatial Clustering Method for Geographic Data

نویسندگان

  • Toshihiro Osaragi
  • Toshihiro OSARAGI
چکیده

In the process of visualizing quantitative spatial data, it is necessary to classify attribute values into some class divisions. In a previous paper, the author proposed a classification method for minimizing the loss of information contained in original data. This method can be considered as a kind of smoothing method that neglects the characteristics of spatial distribution. In order to understand the spatial structure of data, it is also necessary to construct another smoothing method considering the characteristics of the distribution of the spatial data. In this paper, a spatial clustering method based on Akaike's Information Criterion is proposed. Furthermore, numerical examples of its application are shown using actual spatial data for the Tokyo Metropolitan area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Analysis and Geographic Factors Associated with Cutaneous Leishmaniasis in Southern Iran

Introduction: This study aimed to determine the hotspot areas for Cutaneous Leishmaniasis (CL) in Fasa city and assess the relations between the geographical factors with CL incidence using spatial analysis. Materials and Methods: This ecological study was conducted in Fasa city, data of the CL disease such as the total number of CL cases and the population at risk from 2009 to 2014. Weather c...

متن کامل

Geographic and Clustering Routing for Energy Saving in Wireless Sensor Network with Pair of Node Groups

Recently, wireless sensor network (WSN) is the popular scope of research. It uses too many applications such as military and non-military. WSN is a base of the Internet of Things (IoT), pervasive computing. It consists of many nodes which are deployed in a specific filed for sense and forward data to the destination node. Routing in WSN is a very important issue because of the limitation of the...

متن کامل

Efficient Density Clustering Method for Large Spatial Data Using HOBBit Rings

Data mining for spatial data has become increasingly important as more and more organizations are exposed to spatial data from such sources as remote sensing, geographical information systems (GIS), astronomy, computer cartography, environmental assessment and planning, bioinformatics, etc. Recently, density based clustering methods, such as DENCLUE, DBSCAN, OPTICS, have been published and reco...

متن کامل

Applying Supervised Clustering to Landsat MSS Images into GIS-Application

In this paper, the authors describe and implement an algorithm to perform a supervised classification into Landsat MSS satellite images. The Maximum Likelihood Classification method is used to generate raster digital thematic maps by means of a supervised clustering. The clustering method has been proved in Landsat MSS images of different regions of Mexico to detect several training data relate...

متن کامل

ICEAGE: Interactive Clustering and Exploration of Large and High-Dimensional Geodata

The unprecedented large size and high dimensionality of existing geographic datasets make the complex patterns that potentially lurk in the data hard to ®nd. Clustering is one of the most important techniques for geographic knowledge discovery. However, existing clustering methods have two severe drawbacks for this purpose. First, spatial clustering methods focus on the speci®c characteristics ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002